4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
Identifying MicroRNA Markers From Expression Data: A Network...
来自 : 发布时间:2024-12-27
主页资源当前: 技术信息技术信息mAb/pAb 生产的抗原要求mAb 开发的抗原制备pAb 开发的抗原制备

资质报告CHO|360-HCP ELISA 我们通用 HCP ELISA 试剂盒的说明书CHO|360- HCP ELISAE.coli|360-HCP ELISA 货物/抗原接收

biogenes 的进货部门在工作日 (CET) 运营:

周一至周四:上午 7 点至下午 5 点周五:上午 7 点至下午 4 点

我们可以不保证非时间发货的正确处理。

请注意,BioGenes 将不会在以下银行假日期间运营:

202307 年 3 月 8 日 - 202301 年 4 月 10 日 202318 年 5 月 - 202329 年 5 月 19 日 202303 年 10 月2023222023 年 12 月 - 2024 年 1 月 1 日

返回顶部

主页资源当前:网络研讨会宿主细胞蛋白网络研讨会 2022\"成功 HCP 监测的策略”

网络研讨会内容是:

BioGenes 的 HCP 监测方法成功的 ELISA 开发策略试剂表征的正交方法今天就向我展示网络研讨会!宿主细胞蛋白网络研讨会 2020”宿主细胞蛋白 ELISA 开发中的挑战和解决方案”

网络研讨会的内容是:

通用与特定 HCP ELISA 格式我们的强大抗 HCP 抗体方法样品/试剂表征的正交方法是的,我想观看网络研讨会主页资源当前:海报海报

建立评估临床样本中治疗性反义寡核苷酸免疫原性的测定方法 Nikitas Bistolas、Beate Habel、Hans Baumeister (FyoniBio)、Jenny Pressl、Claudia Zahn (BioGenes)2022(了解更多)

宿主细胞蛋白抗体表征的方法学挑战 Pia Paarmann 博士和 Stefan Sommerschuh (BioGenes) 博士。 Mirko Sobotta(勃林格殷格翰)2019(了解更多)

宿主细胞蛋白 ELISA 开发的常见挑战 Pia Paarmann 和 Stefan Sommerschuh2018(了解更多)

特定宿主细胞蛋白检测的开发用于植物表达系统小立碗藓 (Moss) Stefan Sommerschuh、Paulina Dabrowska-Schlepp、Claudia Geserick、Nicole Gliese、Mathias Knappenberger、Holger Niederkrüger 和 Andreas Schaaf2016(了解更多)

E.coli|360 -HCP ELISA 开发增强型通用 HCP 测定法,用于测定大肠杆菌细胞系中的 HCP Bianca Petter、Claudia Geserick、Michael Kirchner 和 Yvonne Haberkorn2015(了解更多)

CHO|360-HCP ELISA 在 CHO 细胞中开发增强型通用 HCP 检测卡罗琳·弗洛格鲁普-Kraeft、Michael Kirchner 和 Yvonne Haberkorn2013(了解更多)

主页资源当前:出版物出版物单克隆抗体\"单克隆抗体\"

精选的使用 BioGenes 生产的单克隆抗体的客户出版物

多克隆抗体\"多克隆抗体\"< p>一系列使用 BioGenes 生产的多克隆抗体的客户出版物宿主细胞蛋白\"Host

有关宿主细胞蛋白分析的文章精选

主页当前: 资源资源 新闻博客(最新趋势、新闻、时事通讯和活动) 科学出版物(抗体和 HCP 分析) 海报 网络研讨会 技术信息问卷HomeHCP 分析当前:质谱法通过质谱法进行补充分析

BioGenes 可根据要求提供补充 MS 服务,以识别客户 DSP 样品中难以去除的 HCP,并通过正交方法可靠地评估 HCP ELISA 试剂。这些服务是与我们的合作伙伴 Alphalyse 和 FyoniBio 合作提供的。

HCP 试剂表征和风险评估

ELISA 试剂表征对于确定检测方法是否适合 HCP 检测和定量至关重要。根据当前指南的建议,应使用多种正交方法来确定覆盖范围。 IAC-2D DIGE 和 IAC-MS 结合用于 HCP ELISA 试剂表征,提供了可靠的 HCP 监测策略,包括相关 HCP 的定量和鉴定。潜在高风险蛋白质的 MS 分析和鉴定由 SWATH® 质谱 HCP 分析专家 Alphalyse 执行。

\"HCP目标蛋白质鉴定

对于特定的、难以去除的 HCP 的分析,我们建议对凝胶斑点进行深入的 LC-MS/MS。一维/二维蛋白质分离后,将使用考马斯或荧光颜色染色以提高灵敏度来可视化蛋白质条带/斑点。为了鉴定目标蛋白质,从感兴趣的点中提取蛋白质,然后进行胰蛋白酶消化和随后的 MS 分析。这项服务将与我们经验丰富的质谱合作伙伴 FyoniBio 合作提供。

\"\" 填写我们的查询表以获取更多信息或详细报价Part of the Communications in Computer and Information Science book series (CCIS, volume 836)AbstractThe identification of bioMarkers is very important to know the presence or severity of a particular disease state in the patient body. According to the latest studies on miRNAs and their behaviors, it is known to us that miRNAs involve in the regulation mechanism of several biological processes. Sometimes the abnormal change in miRNA expressions in different conditions may lead to malignant growth in tissues. In this article, our proposed approach not only helps to detect differentially coexpressed modules but also helps to identify biomarker candidates from those modules. The proposed algorithm uses the WCGNA software package to explore coexpression profiles of the miRNAs. The algorithm has been applied to existing miRNA datasets to point out the miRNA markers. Then, biological validation analysis has been performed for the obtained miRNA markers.KeywordsMicroRNA marker Microarray analysis Differentially coexpressed network Topological overlap Intramodular connectivity MiRNA-target interaction Carcinomas This is a preview of subscription content, log in to check access.References1.Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2009)CrossRefGoogle Scholar2.Ambros, V.: The functions of animal micrornas. Nature 431(7006), 350–355 (2004)CrossRefGoogle Scholar3.Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)CrossRefGoogle Scholar4.Barter, R.L., Schramm, S.J., Mann, G.J., Yang, Y.H.: Network-based biomarkers enhance classical approaches to prognostic gene expression signatures. BMC Syst. Biol. 8(4), S5 (2014)CrossRefGoogle Scholar5.Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)CrossRefGoogle Scholar6.Choi, J.K., Yu, U., Yoo, O.J., Kim, S.: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 21(24), 4348–4355 (2005)CrossRefGoogle Scholar7.Della Vittoria Scarpati, G.: Analysis of differential miRNA expression in primary tumor and stroma of colorectal cancer patients. BioMed Res. Int. 2014, 840921 (2014)CrossRefGoogle Scholar8.Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar9.Fukushima, A.: DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene 518(1), 209–214 (2013)CrossRefGoogle Scholar10.Hsu, C.L., Juan, H.F., Huang, H.C.: Functional analysis and characterization of differential coexpression networks. Scientific Rep. 5, 13295 (2015)CrossRefGoogle Scholar11.Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9(1), 559 (2008)CrossRefGoogle Scholar12.Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2008)CrossRefGoogle Scholar13.Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A.: Microrna expression profiles classify human cancers. Nature 435(7043), 834–838 (2005)CrossRefGoogle Scholar14.Mukhopadhyay, A., Maulik, U.: An SVM-wrapped multiobjective evolutionary feature selection approach for identifying cancer-microrna markers. IEEE Trans. NanoBioscience 12(4), 275–281 (2013)CrossRefGoogle Scholar15.Ray, S., Chakraborty, S., Mukhopadhyay, A.: DCoSpect: a novel differentially coexpressed gene module detection algorithm using spectral clustering. In: Das, S., Pal, T., Kar, S., Satapathy, S.C., Mandal, J.K. (eds.) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. AISC, vol. 404, pp. 69–77. Springer, New Delhi (2016).  https://doi.org/10.1007/978-81-322-2695-6_7CrossRefGoogle Scholar16.Raza, K., Jaiswal, R.: Reconstruction and analysis of cancer-specific gene regulatory networks from gene expression profiles. Int. J. Bioinform. Biosci. (IJBB) 3(2), 25–34 (2013)Google Scholar17.Sauter, E.R., Patel, N.: Body fluid micro(mi)RNAs as biomarkers for human cancer. J. Neuclic Acids Investig. 2(1), 1 (2011)CrossRefGoogle Scholar18.Taguchi, Y., Murakami, Y.: Principal component analysis based feature extraction approach to identify circulating microrna biomarkers. PloS One 8(6), e66714 (2013)CrossRefGoogle Scholar19.Tesson, B.M., Breitling, R., Jansen, R.C.: DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinform. 11(1), 497 (2010)CrossRefGoogle Scholar20.Ye, Y., Godzik, A.: Comparative analysis of protein domain organization. Genome Res. 14(3), 343–353 (2004)CrossRefGoogle Scholar21.Yip, A.M., Horvath, S.: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8(1), 22 (2007)CrossRefGoogle Scholar22.Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genetics Mol. Biol. 4(1), 1–43 (2005)MathSciNetzbMATHGoogle ScholarCopyright information© Springer Nature Singapore Pte Ltd. 2018Authors and AffiliationsParamita Biswas1Email authorAnirban Mukhopadhyay11.Department of Computer Science and EngineeringUniversity of KalyaniKalyaniIndia About this paper CrossMark Biswas P., Mukhopadhyay A. (2018) Identifying MicroRNA Markers From Expression Data: A Network Analysis Based Approach. In: Mandal J., Sinha D. (eds) Social Transformation – Digital Way. CSI 2018. Communications in Computer and Information Science, vol 836. Springer, Singapore. https://doi.org/10.1007/978-981-13-1343-1_25

本文链接: http://biogenes.immuno-online.com/view-68432.html

发布于 : 2024-12-27 阅读()